Cytological and Transcriptomic Analyses Reveal Important Roles of CLE19 in Pollen Exine Formation.

نویسندگان

  • Shuangshuang Wang
  • Jianan Lu
  • Xiu-Fen Song
  • Shi-Chao Ren
  • Chenjiang You
  • Jie Xu
  • Chun-Ming Liu
  • Hong Ma
  • Fang Chang
چکیده

The CLAVATA3/ESR-RELATED (CLE) peptide signals are required for cell-cell communication in several plant growth and developmental processes. However, little is known regarding the possible functions of the CLEs in the anther. Here, we show that a T-DNA insertional mutant, and dominant-negative (DN) and overexpression (OX) transgenic plants of the CLE19 gene, exhibited significantly reduced anther size and pollen grain number and abnormal pollen wall formation in Arabidopsis (Arabidopsis thaliana). Interestingly, the DN-CLE19 pollen grains showed a more extensively covered surface, but CLE19-OX pollen exine exhibited clearly missing connections in the network and lacked separation between areas that normally form the lacunae. With a combination of cell biological, genetic, and transcriptomic analyses on cle19, DN-CLE19, and CLE19-OX plants, we demonstrated that CLE19-OX plants produced highly vacuolated and swollen aborted microspores (ams)-like tapetal cells, lacked lipidic tapetosomes and elaioplasts, and had abnormal pollen primexine without obvious accumulation of sporopollenin precursors. Moreover, CLE19 is important for the normal expression of more than 1,000 genes, including the transcription factor gene AMS, 280 AMS-downstream genes, and other genes involved in pollen coat and pollen exine formation, lipid metabolism, pollen germination, and hormone metabolism. In addition, the DN-CLE19(+/+) ams(-/-) plants exhibited the ams anther phenotype and ams(+/-) partially suppressed the DN-CLE19 transgene-induced pollen exine defects. These findings demonstrate that the proper amount of CLE19 signal is essential for the normal expression of AMS and its downstream gene networks in the regulation of anther development and pollen exine formation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Cysteine Protease CEP1, a Key Executor Involved in Tapetal Programmed Cell Death, Regulates Pollen Development in ArabidopsisW OPEN

Tapetal programmed cell death (PCD) is a prerequisite for pollen grain development in angiosperms, and cysteine proteases are the most ubiquitous hydrolases involved in plant PCD. We identified a papain-like cysteine protease, CEP1, which is involved in tapetal PCD and pollen development in Arabidopsis thaliana. CEP1 is expressed specifically in the tapetum from stages 5 to 11 of anther develop...

متن کامل

The cysteine protease CEP1, a key executor involved in tapetal programmed cell death, regulates pollen development in Arabidopsis.

Tapetal programmed cell death (PCD) is a prerequisite for pollen grain development in angiosperms, and cysteine proteases are the most ubiquitous hydrolases involved in plant PCD. We identified a papain-like cysteine protease, CEP1, which is involved in tapetal PCD and pollen development in Arabidopsis thaliana. CEP1 is expressed specifically in the tapetum from stages 5 to 11 of anther develop...

متن کامل

ATP-binding cassette transporter G26 is required for male fertility and pollen exine formation in Arabidopsis.

The highly resistant biopolymer, sporopollenin, gives the outer wall (exine) of spores and pollen grains their unparalleled strength, shielding these structures from terrestrial stresses. Despite a limited understanding of the composition of sporopollenin, it appears that the synthesis of sporopollenin occurs in the tapetum and requires the transport of one or more sporopollenin constituents to...

متن کامل

Wax-deficient anther1 is involved in cuticle and wax production in rice anther walls and is required for pollen development.

In vegetative leaf tissues, cuticles including cuticular waxes are important for protection against nonstomatal water loss and pathogen infection as well as for adaptations to environmental stress. However, their roles in the anther wall are rarely studied. The innermost layer of the anther wall (the tapetum) is essential for generating male gametes. Here, we report the characterization of a T-...

متن کامل

Role of Glycosyltransferases in Pollen Wall Primexine Formation and Exine Patterning1[OPEN]

The pollen cell wall is important for protection of male sperm from physical stresses and consists of an inner gametophytederived intine layer and a sporophyte-derived exine layer. The polymeric constituents of the robust exine are termed sporopollenin. The mechanisms by which sporopollenin is anchored onto microspores and polymerized in specific patterns are unknown, but the primexine, a trans...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 175 3  شماره 

صفحات  -

تاریخ انتشار 2017